Master Project/Thesis - A Cable-pulley Underactuated Principle-based Lower Limb Exoskeleton

Fully-actuated exoskeletons are usually bulky and require strong power supply, while passive exoskeletons only provide limited power assistance. To achieve both a small number of actuators and good assisting performance, we proposed a cable-pulley underactuated principle-based lower limb exoskeleton in which a single cable is able to actuate the hip joint and the knee joint simultaneously. A control strategy using admittance control and the synergies of torque and power assistance was developed.

Exoskeleton Design:

A Cable-pulley Underactuated Principle-based Lower Limb Exoskeleton.

Simulation:

The load-carrying walking simulation with exoskeleton.

Controller Design:

Schematic illustrating the control framework.

Exoskeleton System Integration:

Lower-limb exoskeleton hardware (including mechanical structure, sensing systems and embedded control systems). independently.

Experimental Tests:

Experimental Tests.